
SysBench manual
Alexey Kopytov

<kaamos@users.sourceforge.net>

Copyright © 2004-2009 MySQL AB

Table of Contents

Chapter 1. Introduction .. 2

1. Features of SysBench .. 2

2. Design ... 2

3. Links ... 2

4. Installation .. 3

Chapter 2. Usage ... 4

1. General syntax... 4

2. Common command line options .. 4

3. Batch mode ... 6

4. Test modes .. 6

4.1. cpu .. 6

4.2. threads .. 7

4.3. mutex .. 7

4.4. memory .. 8

4.5. fileio ... 8

4.6. oltp ... 11

mailto:kaamos@users.sourceforge.net

Chapter 1. Introduction

SysBench is a modular, cross-platform and multi-threaded benchmark tool

for evaluating OS parameters that are important for a system running a

database under intensive load.

The idea of this benchmark suite is to quickly get an impression about

system performance without setting up complex database benchmarks or

even without installing a database at all.

1. Features of SysBench

Current features allow to test the following system parameters:

 file I/O performance

 scheduler performance

 memory allocation and transfer speed

 POSIX threads implementation performance

 database server performance

2. Design

The design is very simple. SysBench runs a specified number of threads and

they all execute requests in parallel. The actual workload produced by

requests depends on the specified test mode. You can limit either the total

number of requests or the total time for the benchmark, or both.

Available test modes are implemented by compiled-in modules, and

SysBench was designed to make adding new test modes an easy task. Each

test mode may have additional (or workload-specific) options.

3. Links

Home page

http://sysbench.sf.net/.

Download

http://sf.net/projects/sysbench/.

Mailing lists

http://sysbench.sf.net/
http://sf.net/projects/sysbench/

sysbench-general

Web forums

 Developers

 Help

 Open discussion

Bug tracking system

 Bug reports

 Feature requests

4. Installation

If you are building SysBench from a Bazaar repository rather than from a

release tarball, you should run ./autogen.sh before building.

The following standart procedure will be sufficient to build SysBench in

most cases:

 ./configure

 make

 make install

The above procedure will try to compile SysBench with MySQL support by

default. If you have MySQL headers and libraries in non-standard locations

(and nomysql_config can be found in the PATH environmental variable), then

you can specify them explicitly

with --with-mysql-includes and --with-mysql-libs options to./configure.

To compile SysBench without MySQL support, use --without-mysql. In this

case all database-related test modes will be unavailable.

If you are running on a 64-bit platform, make sure to build a 64-bit binary

by passing the proper target platform and compiler options

to configure script. You can also consult the INSTALL file for generic

installation instructions.

http://sourceforge.net/mail/?group_id=102348
http://sourceforge.net/forum/forum.php?forum_id=353125
http://sourceforge.net/forum/forum.php?forum_id=353124
http://sourceforge.net/forum/forum.php?forum_id=353123
http://sourceforge.net/tracker/?atid=631676&group_id=102348&func=browse
http://sourceforge.net/tracker/?atid=631679&group_id=102348&func=browse

Chapter 2. Usage

1. General syntax

The general syntax for SysBench is as follows:

 sysbench [common-options] --test=name [test-options] command

See Section 2, “Common command line options” for a description of

common options and documentation for particular test mode for a list of

test-specific options.

Below is a brief description of available commands and their purpose:

prepare
Performs preparative actions for those tests which need them, e.g.

creating the necessary files on disk for the fileio test, or filling the

test database for theoltp test.

run

Runs the actual test specified with the --test=name option.

cleanup
Removes temporary data after the test run in those tests which create

one.

help
Displays usage information for a test specified with

the --test=name option.

Also you can use sysbench help to display the brief usage summary and the
list of available test modes.

2. Common command line options

The table below lists the supported common options, their descriptions and

default values:

Option Description
Default
value

http://sysbench.sourceforge.net/docs/#common_options

--num-threads The total number of worker threads to create 1

--max-requests
Limit for total number of requests. 0 means

unlimited
10000

--max-time
Limit for total execution time in seconds.

0 (default) means unlimited
0

--forced-shutdown

Amount of time to wait after --max-time

before forcing shutdown. The value can be

either an absolute number of seconds or as

a percentage of the --max-time value by

specifying a number of percents followed by

the '%' sign.

"off" (the default value) means that no

forced shutdown will be performed.

off

--thread-stack-size Size of stack for each thread 32K

--init-rng

Specifies if random numbers generator

should be initialized from timer before the

test start

off

--test Name of the test mode to run Required

--debug Print more debug info off

--validate
Perform validation of test results where

possible
off

--help
Print help on general syntax or on a test

mode specified with --test, and exit
off

--verbosity
Verbosity level (0 - only critical messages,

5 - debug)
4

--percentile

SysBench measures execution times for all

processed requests to display statistical

information like minimal, average and

maximum execution time. For most benchmarks

it is also useful to know a request execution

time value matching some percentile (e.g.

95% percentile means we should drop 5% of the

most long requests and choose the maximal

value from the remaining ones).

This option allows to specify a percentile

rank of query execution times to count

95

--batch
Dump current results periodically

(see Section 3, “Batch mode”)
off

http://sysbench.sourceforge.net/docs/#batch_mode

--batch-delay
Delay between batch dumps in secods

(see Section 3, “Batch mode”)
300

--validate
Perform validation of test results where

possible
off

Note that numerical values for all size options (like --thread-stack-size in

this table) may be specified by appending the corresponding multiplicative

suffix (K for kilobytes, M for megabytes, G for gigabytes and T for

terabytes).

3. Batch mode

In some cases it is useful to have not only the final benchmarks statistics,

but also periodical dumps of current stats to see how they change over the

test run. For this purpose SysBench has a batch execution mode which is

turned on by the --batch option. You may specify the delay in seconds

between the consequent dumps with the --batch-delay option. Example:

sysbench --batch --batch-delay=5 --test=threads run

This will run SysBench in a threads test mode, with the current values of

minimum, average, maximum and percentile for request execution times

printed every 5 seconds.

4. Test modes

This section gives a detailed description for each test mode available in

SysBench.

4.1. cpu

The cpu is one of the most simple benchmarks in SysBench. In this mode

each request consists in calculation of prime numbers up to a value specified

by the --cpu-max-primes option. All calculations are performed using 64-bit

integers.

http://sysbench.sourceforge.net/docs/#batch_mode

Each thread executes the requests concurrently until either the total number

of requests or the total execution time exceed the limits specified with the

common command line options.

Example:

sysbench --test=cpu --cpu-max-prime=20000 run

4.2. threads

This test mode was written to benchmark scheduler performance, more

specifically the cases when a scheduler has a large number of threads

competing for some set of mutexes.

SysBench creates a specified number of threads and a specified number of

mutexes. Then each thread starts running the requests consisting of locking

the mutex, yielding the CPU, so the thread is placed in the run queue by the

scheduler, then unlocking the mutex when the thread is rescheduled back to

execution. For each request, the above actions are run several times in a loop,

so the more iterations is performed, the more concurrency is placed on each

mutex.

The following options are available in this test mode:

Option Description
Default
value

--thread-yields
Number of lock/yield/unlock loops to

execute per each request
1000

--thread-locks Number of mutexes to create 8

Example:

sysbench --num-threads=64 --test=threads --thread-yields=100

--thread-locks=2 run

4.3. mutex

This test mode was written to emulate a situation when all threads run

concurrently most of the time, acquiring the mutex lock only for a short

period of time (incrementing a global variable). So the purpose of this

benchmarks is to examine the performance of mutex implementation.

The following options are available in this test mode:

Option Description
Default
value

--mutex-num
Number of mutexes. The actual mutex to lock is

chosen randomly before each lock
4096

--mutex-locks
Number of mutex locks to acquire per each

request
50000

--mutex-loops
Number of iterations for an empty loop to

perform before acquiring the lock
10000

4.4. memory

This test mode can be used to benchmark sequential memory reads or writes.

Depending on command line options each thread can access either a global

or a local block for all memory operations.

The following options are available in this test mode:

Option Description
Default
value

--memory-block-size Size of memory block to use 1K

--memory-scope

Possible values: global, local. Specifies

whether each thread will use a globally

allocated memory block, or a local one.

global

--memory-total-size Total size of data to transfer 100G

--memory-oper
Type of memory operations. Possible

values: read, write.
100G

4.5. fileio

This test mode can be used to produce various kinds of file I/O workloads.

At the prepare stage SysBench creates a specified number of files with a

specified total size, then at the run stage, each thread performs specified I/O

operations on this set of files.

When the global --validate option is used with the fileio test mode,

SysBench performs checksums validation on all data read from the disk. On

each write operation the block is filled with random values, then the

checksum is calculated and stored in the block along with the offset of this

block within a file. On each read operation the block is validated by

comparing the stored offset with the real offset, and the stored checksum

with the real calculated checksum.

The following I/O operations are supported:

seqwr
sequential write

seqrewr
sequential rewrite

seqrd
sequential read

rndrd
random read

rndwr
random write

rndrw
combined random read/write

Also, the following file access modes can be specified, if the underlying

platform supports them:

Asynchronous I/O mode

At the moment only Linux AIO implementation is supported. When

running in asynchronous mode, SysBench queues a specified number

of I/O requests using Linux AIO API, then waits for at least one of

submitted requests to complete. After that a new series of I/O

requests is submitted.

Slow mmap() mode

In this mode SysBench will use mmap'ed I/O. However, a

separate mmap will be used for each I/O request due to the limitation of

32-bit architectures (we cannotmmap() the whole file, as its size migth

possibly exceed the maximum of 2 GB of the process address space).

Fast mmap() mode

On 64-bit architectures it is possible to mmap() the whole file into the

process address space, avoiding the limitation of 2 GB on 32-bit

platforms.

Using fdatasync() instead of fsync()

Additional flags to open(2)

SysBench can use additional flags to open(2), such

as O_SYNC, O_DSYNC and O_DIRECT.

Below is a list of test-specific option for the fileio mode:

Option Description
Defau
lt
value

--file-num Number of files to create 128

--file-block

-size
Block size to use in all I/O operations 16K

--file-total

-size
Total size of files 2G

--file-test-

mode

Type of workload to produce. Possible values: seqwr,

seqrewr, seqrd, rndrd, rndwr, rndwr (see above)

requi
red

--file-io-mo

de

I/O mode. Possible

values: sync, async, fastmmap, slowmmap (onl

y if supported by the platform, see above).

sync

--file-async

-backlog

Number of asynchronous operations to queue per

thread (only for --file-io-mode=async, see above)
128

--file-extra

-flags
Additional flags to use with open(2)

--file-fsync

-freq

Do fsync() after this number of requests (0 -

don't use fsync())
100

--file-fsync

-all
Do fsync() after each write operation no

--file-fsync

-end
Do fsync() at the end of the test yes

--file-fsync

-mode

Which method to use for synchronization. Possible

values: fsync, fdatasync (see above)
fsync

--file-merge Merge at most this number of I/O requests if possible 0

d-requests (0 - don't merge)

--file-rw-ra

tio

reads/writes ration for combined random read/write

test
1.5

Usage example:

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw prepare

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw run

$ sysbench --num-threads=16 --test=fileio --file-total-size=3G

--file-test-mode=rndrw cleanup

In the above example the first command creates 128 files with the total size

of 3 GB in the current directory, the second command runs the actual

benchmark and displays the results upon completion, and the third one

removes the files used for the test.

4.6. oltp

This test mode was written to benchmark a real database performance. At

the prepare stage the following table is created in the specified database

(sbtest by default):

 CREATE TABLE `sbtest` (

 `id` int(10) unsigned NOT NULL auto_increment,

 `k` int(10) unsigned NOT NULL default '0',

 `c` char(120) NOT NULL default '',

 `pad` char(60) NOT NULL default '',

 PRIMARY KEY (`id`),

 KEY `k` (`k`));

Then this table is filled with a specified number of rows.

The following execution modes are available at the run stage:

Simple

In this mode each thread runs simple queries of the following form:

 SELECT c FROM sbtest WHERE id=N

where N takes a random value in range 1..<table size>

Advanced transactional

Each thread performs transactions on the test table. If the test table

and database support transactions (e.g. InnoDB engine in MySQL),

then BEGIN/COMMITstatements will be used to start/stop a transaction.

Otherwise, SysBench will use LOCK TABLES/UNLOCK TABLES statements

(e.g. for MyISAM engine in MySQL). If some rows are deleted in a

transaction, the same rows will be inserted within the same

transaction, so this test mode does not destruct any data in the test

table and can be run multiple times on the same table.

Depending on the command line options, each transaction may

contain the following statements:

 Point queries:

SELECT c FROM sbtest WHERE id=N

 Range queries:

SELECT c FROM sbtest WHERE id BETWEEN N AND M

 Range SUM() queries:

SELECT SUM(K) FROM sbtest WHERE id BETWEEN N and M

 Range ORDER BY queries:

SELECT c FROM sbtest WHERE id between N and M ORDER BY c

 Range DISTINCT queries:

SELECT DISTINCT c FROM sbtest WHERE id BETWEEN N and M ORDER BY
c

 UPDATEs on index column:

UPDATE sbtest SET k=k+1 WHERE id=N

 UPDATEs on non-index column:

UPDATE sbtest SET c=N WHERE id=M

 DELETE queries:

DELETE FROM sbtest WHERE id=N

 INSERT queries:

INSERT INTO sbtest VALUES (...)

Non-transactional

This mode is similar to Simple, but you can also choose the query to

run. Note that unlike the Advanced transactional mode, this one

does not preserve the test table between requests, so you should

recreate it with the appropriate cleanup/prepare commands between

consecutive benchmarks.

Below is a list of possible queries:

 Point queries:

SELECT pad FROM sbtest WHERE id=N

 UPDATEs on index column:

UPDATE sbtest SET k=k+1 WHERE id=N

 UPDATEs on non-index column:

UPDATE sbtest SET c=N WHERE id=M

 DELETE queries:

DELETE FROM sbtest WHERE id=N

 The generated row IDs are unique over each test run, so no row

is deleted twice.

 INSERT queries:

INSERT INTO sbtest (k, c, pad) VALUES(N, M, S)

Below is a list of options available for the database test mode:

Option Description
Defaul
t
value

--oltp-test

-mode

Execution mode (see above). Possible values: simpe

(simple), complex (advanced transactional) and

nontrx (non-transactional)

comple

x

--oltp-read

-only

Read-only mode. No UPDATE, DELETE or INSERT queries

will be performed.
off

--oltp-skip

-trx

Omit BEGIN/COMMIT statements, i.e. run the same

queries as the test would normally run but without

using transactions.

off

--oltp-reco

nnect-mode

Reconnect mode. Possible values:

session

Don't reconnect (i.e. each thread

disconnects only at the end of the

test)

query Reconnect after each SQL query

transaction

Reconnect after each transaction

(if transactions are used in the

selected DB test)

random
One of the above modes is randomly

chosen for each transaction

sessio

n

--oltp-rang

e-size
Range size for range queries 100

--oltp-poin

t-selects
Number of point select queries in a single transaction 10

--oltp-simp

le-ranges
Number of simple range queries in a single transaction 1

--oltp-sum-

ranges
Number of SUM range queries in a single transaction 1

--oltp-orde

r-ranges
Number of ORDER range queries in a single transaction 1

--oltp-dist

inct-ranges

Number of DISTINCT range queries in a single

transaction
1

--oltp-inde

x-updates
Number of index UPDATE queries in a single transaction 1

--oltp-non-

index-updat

es

Number of non-index UPDATE queries in a single

transaction
1

--oltp-nont Type of queries for non-transactional execution mode select

rx-mode (see above). Possible values: select, update_key,

update_nokey, insert, delete.

--oltp-conn

ect-delay

Time in microseconds to sleep after each connection

to database
10000

--oltp-user

-delay-min

Minimum time in microseconds to sleep after each

request
0

--oltp-user

-delay-max

Maximum time in microseconds to sleep after each

request
0

--oltp-tabl

e-name
Name of the test table sbtest

--oltp-tabl

e-size
Number of rows in the test table 10000

--oltp-dist

-type

Distribution of random numbers. Possible

values: uniform (uniform distribution), gauss

(gaussian distribution) and special.

With special distribution a specified percent of

numbers is generated in a specified percent of cases

(see options below).

specia

l

--oltp-dist

-pct

Percentage of values to be treated as 'special' (for

special distribution)
1

--oltp-dist

-res

Percentage of cases when 'special' values are

generated (for special distribution)
75

--db-ps-mod

e

If the database driver supports Prepared Statements

API, SysBench will use server-side prepared

statements for all queries where possible. Otherwise,

client-side (or emulated) prepared statements will be

used. This option allows to force using emulation even

when PS API is available. Possible values: disable,

auto.

auto

Also, each database driver may provide its own options. Currently only

MySQL driver is available. Below is a list of MySQL-specific options:

Option Description
Defau
lt
value

--mysql-host

MySQL server host.

Starting from version 0.4.5 you may specify a list

of hosts separated by commas. In this case SysBench

local

host

will distribute connections between specified MySQL

hosts on a round-robin basis. Note that all

connection ports and passwords must be the same on

all hosts. Also, databases and tables must be

prepared explicitely on each host before executing

the benchmark.

--mysql-port
MySQL server port (in case TCP/IP connection should

be used)
3306

--mysql-sock

et
Unix socket file to communicate with the MySQL server

--mysql-user MySQL user user

--mysql-pass

word
MySQL password

--mysql-db

MySQL database name. Note SysBench will not

automatically create this database. You should

create it manually and grant the appropriate

privileges to a user which will be used to access the

test table.

sbtes

t

--mysql-tabl

e-engine

Type of the test table. Possible values: myisam,

innodb, heap, ndbcluster, bdb, maria, falcon, pbxt

innod

b

--mysql-ssl Use SSL connections. no

--myisam-max

-rows

MAX_ROWS option for MyISAM tables (required for big

tables)

10000

00

--mysql-crea

te-options
Additional options passed to CREATE TABLE.

Example usage:

$ sysbench --test=oltp --mysql-table-engine=myisam

--oltp-table-size=1000000 --mysql-socket=/tmp/mysql.sock

prepare

$ sysbench --num-threads=16 --max-requests=100000 --test=oltp

--oltp-table-size=1000000 --mysql-socket=/tmp/mysql.sock

--oltp-read-only run

The first command will create a MyISAM table 'sbtest' in a database 'sbtest'

on a MySQL server using /tmp/mysql.sock socket, then fill this table with

1M records. The second command will run the actual benchmark with 16

client threads, limiting the total number of request by 100,000.

